




## RC SNUBBERS (SMPS)

Snubbers are energy-absorbing circuits used to suppress the voltage spikes caused by the circuit's inductance when a switch, electrical or mechanical, opens. The most common snubber circuit is a capacitor and resistor connected in series across the switch (transistor).



The design procedure is as follows:

If you assume the source has negligible impedance, the worst-case peak current in the snubber circuit is --

$$I_{PK} = \underline{V}_{0}$$
 (1)  $R_{S} = \text{snubber resistance}$   
 $R_{S}$   $V_{0} = \text{open circuit voltage}$ 

and the circuit dv/dt is determined from the following:

$$I_p = C dv/dt$$
 (2)

substituting (1) into (2)

$$dv/dt = V_0 C/R_S$$

The energy stored in the capacitor is :  $E = 1/2 C(V_0)^2$ 

Ohm's Law says that the snubber resistance is equal to:

The amount of energy the snubber resistance is to dissipate is the amount of energy stored in the snubber capacitor. It is recommended that you choose a capacitance value that causes the resistor to dissipate one half the wattage rating of the resistor.

$$P = 1/2 C(V_0)^2 2f$$
 Where  $f =$  switching frequency  
=  $C(V_0)^2 f$   $2f =$  number of transitions per cycle  
 $C = P/f(V_0)^2$ 







The snubber capacitance has to meet two requirements. First, the energy stored in the snubber capacitor must be greater than the energy in the circuit's inductance.

$$1/2 \ \text{C(V}_0)^2 > 1/2 \ \text{LI}^2$$

 $1/2 \text{ C(V}_0)^2 > 1/2 \text{ LI}^2$  Where  $V_0 = \text{open circuit voltage}$ 

I = closed circuit current

L = circuit inductance

Secondly, the time constant of the snubber circuit should be small compared to the shortest on time expected, usually 10% of the on time.

$$RC < T_{on}/10$$

 $C > LI^2/(V_0)^2$ 

Where  $T_{0n} =$  shortest on-time expected

R = snubber resistance

C = snubber capacitance

